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FINAL TECHNICAL REPORT:

FLUID-GRANULAR BOUNDARY LAYERS
UNDER NEARBREAKING WAVES

Douglas L. Inman and Daniel C. Conley

The long-term goals of this project were to advance the understanding of fluid-sediment
interactions in the boundary layer under waves; and in this way to improve models of the
transport of sediment, nutrients and contaminants. Improved modeling will lead to better
understanding of bedform response to fluid forcing and to improved prediction of beach
morphology.

The study began with a serics of field investi gationé that identificd areas of net onshore
transport of sediment over gently sloping bottoms (Inman & Dolan, 1989), and a detailed study
of beach profiles that indicated that beach stability versus crosshore-transport was governed by
the equilibrium beach profile. Disequilibrium conditions could lead to onshore or offshore
transport (Inman et al, 1993). This emphasized the need for an improved understanding of the
oscillatory boundary layer under shoaling waves. Ficld study of the fluid-granular boundary layer
under nearbreaking waves showed a pronounced crest-trough asymmetry; with a visually different
structural sequence under the crest, referred to as streaking, roiling and pluming. Roiling and
pluming did not occur under the wave trough. It was suggested that this asymmetry, which
results from more intense stress under the crest, was caused by wave-induced ventilation through
the porous bed (Conley & Inman, 1992).

Recent work has focused on laboratory experiments to determine the magnitude of
boundary layer asymmetries due to ventilation as well as the sensitivity of these asymmetries to
the ventilation parameter, and wave shape (Conley & Inman, 1993; 1994). As a result of this
research, it has been shown that boundary layer ventilation is an essential element in the stress
asymmetry that drives sediment transport by waves, and that leads to the characteristic
eqdilibrium profile under shoaling waves. Ventilation also explains the net onshore transport of
sediment over gently sloping profiles as at False Cape on the Outer Banks of North Carolina
(Inman & Dolan, 1989).

Ventilated oscillatory boundary layers are those arising over permeable beds when the

primary boundary parallel flow is subject to a secondary transpiration flow through the bed. The
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transpiration flow is induced by the pressure field of the wave and has the same frequency and
shape as the wave form; producing flow into the bed (suction) under the wave crest and out of
the bed (injection) under the wave trough (Figurc 1). A flow ventilation parameter V is defined

as
V= W / Uy,

where u,, is the maximum boundary-parallcl orbital velocity (positive under the wave crest) and
w,, is the maximum vertical velocity into (negative) and out of (positive) the bed, and the sign
of V indicates whether injection (\7 > 0) or suction (\7 < 0) occurs concurrently with positive
orbital flow. Additionally, an instantancous ventilation parameter is defined as V'’ = w()/u(f).

In general, boundary transpiration modifies the boundary layer velocity profile. Suction
pulls streamlines down towards the bed, shifting the velocity profile closer to the bed. This
results in high shear near the bed and, therefore, higher shear stress at the bed. Injection raises
the streamlines and reduces the stress at the bed. Since the ventilated oscillatory boundary layer
experiences both suction and injection in one full cycle, the result is a net stress, < Ty >, and a
net boundary layer velocity, or ventilation current < ;\, >, in an otherwise symmetrical flow.
The ventilation current is in addition to the well known "bottom wind" which occurs under
symmetrical oscillations over an impermeable bed (Longuet-Higgins, 1953).

The maximum shear stress T, is a fundamental clement in the onset of grain motion under
wave action. However, in terms of the beach profile, the net bottom stress is the most important
variable in determining where grains will travel. For ventilated beds, the net stress is a
consequence of the bed stress reduction due to injection and increase due to suction. This net
stress is referred to as the ventilation stress asymmelry, < Ty 2, defined as the net time-averaged
bottom stress over one complete wave cycle.

The stress asymmetries duc to ventilation for symmetrical and asymmetrical waveforms
are .plotted in dimensionless form in Figure 2. In this figure < Ty > is normalized by the average
gross unventilated stress during a full cycle, and the solid line is for symmetrical wave forms.
It is apparent that this relation fits the data (open O) quite well for 0 > V > -0.01. Further, a

dashed line of the same slope but passing through the ordinate intersect of <ty>/<|t,|> = 0.2
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appears to provide a satisfactory fit for the data for asymmetrical waveforms (solid A). The
ordinate intercept is the normalized value of the stress asymmetry due to the waveform alone in
the absence of ventilation.

Laboratory study of spherical grains show that ventilation induces a net transport of
particles which ranges up to 20% of the unventilated orbital displacement. The tests were
performed on groups of identical spheres in bedload motion over a permeable, but otherwise
smooth bed in an oscillatory flow tunnel with a particle displacement (orbital diameter) of 2.1
m. The particle groups consisted of cellulose acetate (p, = 1.32 g/cm®) spheres of diameter 2,
4, 6.5 and 8 mm, and stainless steel (p, = 7.83 g/em®) spheres of diameter 2.1 and 6.4 mm. It
was found that the net transport falls off rapidly with decreasing value of |V|

The results from this study have profound implications for the study and modeling of
sediment transport by waves. Several parameterizations in common usage in transport modeling
are seen to be questionable. For example, consider the concept of a friction factor where bed
stress is taken to be pfoportional to the square of the magnitude of the velocity, independent of
the sign of the velocity (e.g., Jensen et al., 1989). Our work has shown that such a formalism
which has been adopted directly from steady flow conditions is incorrect. Similarly, any type
of suspended load modeling which attempts to predict turbulent flow characteristics and therefore
the suspended load (e.g., Bakker, 1974; Ribberink & Al-Salem, 1994) without considering the
different stresses and kinetic energy distributions associated with crest-trough flow asymmetries
could experience serious difficulty. Our results show that boundary ventilation represents another

degree of similitude that is Jacking in most laboratory studies of nearshore sedimentary processes.
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Figure 1. Definition sketch for stress asymmetry resulting from wave motion over ventilated
porous beds.
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Figure 2. Stress asymmuetry for ventilated symmetric and asymmetric waveforms. Brackets show
95% confidence intervals. [Data from Conley and Inman 1994].




